You might never spot them if not for the jumping. On the coast of Guam, Pacific leaping blennies blend in perfectly with the rocks they live on, their limbless bodies maintaining a sleek profile. But the creatures give themselves away when they coil their tails to one side and shoot like a spring from rock to rock. These unsettling animals are fish that live on land. How they pull it off could give us hints about the evolution of our first earthbound ancestors.
Terry Ord, an evolutionary ecologist at the University of New South Wales, calls the Pacific leaping blenny "an extraordinary animal." It lives its adult life out of water, hopping between rocks and breathing through its skin as well as gills. It relies on splashes from waves to stay wet, but it rarely—or never—goes for a swim.
Even though the coast of Guam teems with leaping blennies, Ord says, "we know surprisingly little about this land fish." Ord and his graduate student Courtney Morgans investigated one mysterious feature: the fish's conveniently rock-like coloration. Without being so well camouflaged, could the blennies have ever made their first leap onto land?
Morgans and Ord traveled around the periphery of Guam and visited five different blenny populations. At each site, they took photographs of the fish and their background rocks. (The blennies aren't always stone-colored; during courtship, males darken to a charcoal hue while females fade nearly to white. Both sexes can flash a bright-red fin on their backs that they normally keep hidden. But the researchers kept a close eye on their subjects during the experiment to make sure they didn't change colors.)
Computer analysis of the photos showed that the blennies' normal skin color is a perfect match to the rocks they live on. Some birds use UV light, which the researchers didn't analyze, to find their prey. But for most of the hungry lizards and crabs patrolling Guam, the blennies should blend right in to the rocks.
To find out how well this camouflage really protects leaping blennies, Morgans and Ord set up 70 fake fish as bait. They molded plasticine blenny bodies with realistic coloration and anchored them to spots around the island with fishing line. Some fake blennies sat on the rocks, while others were on the sand, where they don't blend in as well.
After three days, Morgans and Ord returned to their fake fish. If the props were nicked, punctured, or had bites taken out of them, the scientists assumed predators had come by. They saw that
predators attacked blennies on the sand much more often than those on the rocks.
So their coloration seems to be crucial to the leaping blennies' survival on shore. The scientists think that in this regard, the fish may have just been lucky. When they compared the Pacific leaping blenny to 12 closely related blenny species, they found that all the relatives have similar coloration. (Some of these relatives also spend time out of water, but the Pacific leaping blenny is the only one to live on land full-time.) If the ancestor to all these species had the same rocky skin color, then it was well prepared to wriggle out of the ocean and start a new life on land.
That doesn't mean the transition was easy. Blennies also had to evolve a way to breathe air through their skin, like frogs do. Their tail-jumping trick is helpful too, letting the legless fish propel themselves through their habitat. "Obviously moving about on land is critical," Ord says. (You can watch them leaping in the video below, from his lab's
YouTube channel.)
Ord says this freak-show fish actually has a lot to tell us about evolution. For one thing, it demonstrates the kinds of adaptations an animal can make after it transitions to a new home. It also speaks to our own ancestry. "In the late Devonian, fish made the first transition onto land, and from that event evolved all of the land vertebrates we now have in the world," he says. The land fish represent a "snapshot of one of the most important evolutionary events in our history." Our ancestors may have looked equally ridiculous as they floundered on land—but like the leaping blenny, they were going places.
Image: Courtney Morgans, UNSW
Courtney L. Morgans, & Terry J. Ord (2013). Natural selection in novel environments: predation selects for background matching in the body colour of a land fish. Animal Behaviour DOI: 10.1016/j.anbehav.2013.09.027
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS
Note: Only a member of this blog may post a comment.